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Concentrated Solar Power

I Continuous design parameters:
tower height, receiver diameter, receiver height, ...

I Integer design parameters:
number of O&M staff, wash crews, and receiver panels

Unrelaxable MIP-DFO

minimize
x

ppaPrice(S(x))

subject to FluxMax(S(x)) ≤ K
x ∈ X ⊂ Zq × Rp

I Unrelaxable integer variables
I Computationally expensive simulation S(x)
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Problem formulation
Derivative-Free Optimization with Unrelaxable Integers

minimize
x

f(S(x)) subject to x ∈ X ⊂ Zp × Rq

1. Evaluation involves S(x) numerical simulation
(computationally expensive)

I derivatives ∇xS unavailable or expensive to compute
I single evaluation of S(x) can take minutes/hours/days

⇒ cannot use Outer Approximation
2. Unrelaxable integers, e.g. # receiver panels

I Unrelaxable: simulation cannot run at fractional values!

⇒ cannot use Branch-and-Bound

Open problem (MINLP Oberwolfach, 2015)

Solve MI-DFO for convex f(S(x)) without complete enumeration!
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Pattern-search for continuous DFO
Positive
spanning set of
directions

Select step ∆ > 0 and starting point x
repeat

From x, search positive-spanning set of step ∆
if better point x̂ found then

Set x := x̂; Increase ∆
else

Decrease ∆

until convergence;

Convergence depends on spanning set properties and smoothness of
the function.
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Pattern-Search Techniques for DFO
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Pattern-Search Algorithm for Integer DFO
Proposed by Audet & Dennis (2001):

I User-defined discrete neighborhood

I Declare “mesh-isolated minimizer” if no local improvement

I Any (y1, y2) ∈ Z2 with 2y1 = y2 is optimal
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Discussion

Open problem

Can we guarantee a minimizer of a convex f(x) when x is integer?
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1D

minimize
x

f(x), subject to x ∈ Zn

and assume f(x) convex

... underestimator for convex, integer DFO!
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Underestimating f

Formulate piecewise underestimator as MILP
I Interpolation points: X := {xi ∈ Zn}, |X| ≥ n+ 1

I Function values: f i := f(xi) for xi ∈ X
I i := (i1, . . . , in+1) multi-index for n+ 1 distinct ij ∈ i with

1 ≤ i1 < . . . , in+1 ≤ |X|

Interpolation Cuts

For Xi :=
{
xij : ij ∈ i

}
obtain cut

(ci)Tx+ bi

... only valid in cones ... by solving linear
system: [

Xi e
] [ci

bi

]
= fi,
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Underestimating f

Lemma: Underestimating Property

f(x) convex and Xi = {xi1 , . . . , xin+1} poised, then if follows that

f(x) ≥ (ci)Tx+ bi, ∀ x ∈ Ui :=

n+1⋃
j=1

cone
(
xij −Xi

)
,

where cone
(
xij −Xi

)
is the cone with vertex xij ∈ Xi & rays

xij − xil :
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Solving the subproblem - MILP formulation
Modeling membership in cones (using η ≥ f(x) epigraph trick)

I Binary zij = 1 if and only if x ∈ cone
{
xij −Xi

}
, for ij ∈ i

I Cut η ≥ (ci)Tx+ bi −Mi(1−
n+1∑
j=1

zij ) for big-Mi > 0

I SOS-1 constraint: at most one cone, zij ≤ 1, active
I Any point x is linear combination of extreme rays (W (X) set

of all poised subsets)

x = xij +

n+1∑
l=1,
l 6=j

λ
ij
l (xij − xil), ∀ij ∈ i, ∀i ∈W (X)

I Indicate x ∈ cone
(
xij −Xi

)
by making λijl ≥ −Mλ(1− zij )

... models zij = 1 ⇒ x ∈ cone
{
xij −Xi

}
for ij ∈ i ... reverse

harder
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Solving the subproblem - MILP formulation
Now to show x ∈ cone

{
xij −Xi

}
⇒ zij = 1

I λ
ij
l ≥ 0 implies wijl = 1 and λijl ≤ −ελ implies wijl = 0

λ
ij
l ≤ −ελ +Mλw

ij
l ...tiny-ε and big-M

... can choose optimal tiny-ε, big-M by solving LPs
I At least one w variables is zero if corresponding z is zero:

nzij ≤
n+1∑

l=1, l 6=j
w
ij
l ≤ n− 1 + zij

MILP subproblem model

I Check
(
|X|
n+ 1

)
poised sets at iteration k

I Formulation needs O(n2) binary variables per poised set
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An Alternative Master Problem
Challenges of MILP Master model

I MILP model exponential in number of interpolation points
I MILP representation is very weak: uses big-M and tiny-ε
⇒ Commercial solvers cannot solve large instances

Replacing CPLEX Solve by Look-Up Table

I Key idea: work in space of original integers, x ∈ Zn
(no additional variables or constraints)

I Replace MILP by look-up-table of underestimator
I Update look-up-table when new points (and therefore new

cuts) are available

Dense/small linear algebra solves ⇒ Fast . . . but not fast enough
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Algorithm 1: Look up algorithm
input: Lower bound η for each point in Ω; Points X with

|X| ≥ n+ 1; f̄ = min
xi∈X

f(xi)

while f̄ > min η do

for i ∈ C do

if Xi is poised

using R

then
Find points in Ω in one of the cones of Xi

using Q

Update η

using Q where η < f̄

Add xk = arg min
x∈Ω

,η<f̄

η and update f̄

Open problem

Given a set of points X on the integer lattice, is there a way to
generate all subsets of size n+ 1 without another in the interior?
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Results Abhishek Function
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Future

I We likely aren’t using convexity as much as we possibly can.
I How to certify (local) optimality when f is nonconvex?
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